skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pappone, Lorenzo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Learning how to control congestion remains a challenge despite years of progress. Existing congestion control protocols have demonstrated efficacy within specific network conditions, inevitably behaving suboptimally or poorly in others. Machine learning solutions to congestion control have been proposed, though relying on extensive training and specific network configurations. In this paper, we loosen such dependencies by proposing Mutant, an online reinforcement learning algorithm for congestion control that adapts to the behavior of the best-performing schemes, outperforming them in most network conditions. Design challenges included determining the best protocols to learn from, given a network scenario, and creating a system able to evolve to accommodate future protocols with minimal changes. Our evaluation on real-world and emulated scenarios shows that Mutant achieves lower delays and higher throughput than prior learning-based schemes while maintaining fairness by exhibiting negligible harm to competing flows, making it robust across diverse and dynamic network conditions 
    more » « less
    Free, publicly-accessible full text available April 28, 2026